Abstract
This paper studies thermomechanical coupling during room-temperature tensile testing of polyamide-6 (PA6) and 50 wt% short glass fibre/PA6. The tests were performed for different fibre angles (0°, 45°, 90°), moisture contents (dry, 50%RH), and strain rates (10−4, 10−2, 10−1s−1). Digital image correlation (DIC) was coupled with infrared thermography. The contribution of the local strains, strain rates and temperatures to the global mechanical behaviour was investigated throughout deformation. The initial thermoelastic response was used to estimate the coefficient of thermal expansion. In PA6, neck development caused significant self-heating at high strain rates, differently between dry and 50%RH. In glass/PA6, however, temperature rises were always small (<+3 °C) despite local strain rate peaks in the fracture zone. This was ascribed to limited plastic deformation, as confirmed by post-mortem microscopy. The full-field data can be highly valuable for the development of advanced constitutive models for both pure polymer and short fibre composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.