Abstract
The surface nanostructuring of boron doped diamond (BDD) can further enhance its unique properties e.g. in electrochemical sensing, photoelectrochemical cells, field emission devices and various kinds of sensors. Here we present an investigation of plasmatic nanostructuring of BDD films without use of a time-consuming masking process. RF plasma technique was used to etch surface nanostructures with dimensions ranging from tenths to hundreds of nm in width and height. The size and shape of achieved diamond nanostructures were influenced only by applied etching parameters. We have found that the etched carbon is re-deposited in an amorphous form creating a mask and this self-masking process is responsible for the final shape of obtained structures.Therefore, this technique is effectively controllable by changing plasma power, gas type and pressure which influence the energy of incident ions and thus the sputtering yield and re-deposition of masking material. Utilization of various gas types, pressures and RF powers revealed the physical type of etching to be dominant over the chemical at both high and low energy ions. The nanostructured surfaces were then observed and characterized by SEM and Raman spectroscopy to investigate the nanostructures dimensions and to confirm the remaining diamond quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.