Abstract

Micro-electromechanical System(MEMS) accelerometers are widely used in a number of inertial navigation systems and vibration detection system thanks to their small size, low cost and low power consumption. In order to improve their performance, the accelerometers have been designed to compensate the zero-bias caused by process variations. A new method of self-calibration sensitivity applies a self-test structure to simulate standard acceleration; depending on the standard and real-time values of the accelerometer’s output and by adjustment of the time division feedback, the scale factor of capacitive accelerometers can be flexibly adjusted to achieve sensitivity in self-calibrating MEMS accelerometers. Moreover, this research also uses the following: a PID feedback structure to improve the stability of the closed-loop system; a correlated double sampling (CDS) circuit to attenuate noise, which can eliminate zero drift caused by offset voltage of the pre-amplifier; a time division multiplexing electrostatic force feedback circuit to achieve the operation of a closed-loop micro-accelerometer. The structure can completely avoid electrostatic feedback coupling with a capacitance change detection circuit, which can also improve the bandwidth and stability of the accelerometer. By means of capacitance compensation array the zero-bias performance of accelerometers can be improved. The bias stability of the accelerometer can be reduced from 173mg to 31mg by testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.