Abstract

Global positioning system (GPS) technology for tracking wildlife continues to evolve at a remarkable pace. As animal movement is increasingly recognised as being critical for several ecological processes, advanced telemetry technology permits collection of a high volume of data across short time intervals that was previously unobtainable. Here we describe the use of GPS telemetry to track the movements of five tagged Emus (Dromaius novaehollandiae Latham) released within the Jarrah (Eucalyptus marginata Sm.) forests of south-western Australia. The Emu plays a significant role as a seed disperser for many species. Describing the movement patterns of this species is a key requirement in refining the extent and significance of its contribution to seed dispersal, both locally and over long distances. We found that Emus followed a typical correlated random walk pattern and that each bird demonstrated a variable response to the landscape in terms of behaviour, extent of movement and habitat selection. From a methodological perspective, 50% of our devices detached before 30 days of GPS locations could be collected, reflecting a need for device refinement for future studies on large ratites. Nevertheless, our preliminary data provide useful insights into the movements of the Emu and potential impacts on seed dispersal within the Jarrah forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call