Abstract

To achieve high-speed scanning of defect detection, this paper proposes a motion-induced eddy current (MIEC) thermography method, which utilizes the relative movement between permanent magnet array and the inspected object to induce the eddy current. Specifically, a set of circumferentially arranged permanent magnets rotating in a steel pipe is used to implement the proposed method. Numerical simulation and experimental studies are conducted to investigate the MIEC and thermal distribution influenced by speed, crack orientation, and lift-off effects. The results show that thermal contrast of the crack rises with its orientation to MIEC flowing path changing from parallel to perpendicular; thermal contrast decreases sharply with the lift-off distance of the magnet array increasing. One merit of the proposed MIEC thermography is that MIEC intensity (thermal contrast) increases with scanning speed and benefits the defect detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call