Abstract
The effect of the calcination temperature at 800 and 1000 °C on the stable formation of the tricalcium phosphate with rhombohedral structure in the system of the hexagonal crystal family was determined, while its precursor was made from limestone obtained from nature in the Lumajang district, Indonesia. The rhombohedral tricalcium phosphate samples were prepared by sol-gel routine, then examined by several tests, such as, Fourie transform infrared spectroscopy to study the deficiency of -OH, X-ray diffraction test to study the microstructure of the tricalcium phosphate with the rhombohedral structure in a hexagonal crystal system, differential scanning calorimetry and thermogravimetry tests to study thermal characteristics, scanning electron microscopy and energy dispersive spectroscopy to study the surface topography and to obtain the atomic ratio Ca/P ~1.5. Finally, the UV-vis test found the optical energy gap, Eg, from ~5.34 to ~5.41 eV for the sample calcined at 800 °C and Eg ~5.19 to ~5.21 eV at 1000 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.