Abstract
The applicability of linear solvation energy relationships (LSERs) to reversed-phase liquid chromatography (RPLC) was studied by examining the retention of a wide variety of aliphatic and aromatic compounds over the range of 20–50% (v/v) acetonitrile, methanol and tetrahydrofuran. The role of cavity formation, dispersion interaction, polarity/polarizability, hydrogen bond acidity, and hydrogen bond basicity in determining the retention behavior as the mobile phase composition was changed has been investigated. The LSER coefficients were then examined in terms of the corresponding properties of the mobile phase (cohesive energy density, surface tension, the Abraham solvophobic parameter, polarity/polarizability, hydrogen bond basicity, and hydrogen bond acidity) and from these the influence of mobile phase and stationary phase on the retention behavior was explored. In order to chemically interpret the RPLC retention results we compared them to alkane–water and octanol–water partition coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.