Abstract

Two-dimensional Direct Numerical Simulation (DNS) of Rayleigh–Bénard Convection of Jet-A fluid (Pr=19.17) is performed in a square cavity. The Rayleigh number of this study is Ra=107 with a temperature difference ΔT=40 K between hot and cold plates to account for non-Oberbeck–Boussinesq (NOB) effect. The Jet-A fluid has higher viscosity and lower thermal conductivity compared to water and the Prandtl number is approximately 4.4 times higher than water at mean temperature of 40 °C. The fluid properties of the working fluid are defined as a polynomial function of temperature. The Boundary layer thicknesses, the Centre line temperature, Flow reversals and the Proper Orthogonal Decomposition (POD) modes are investigated. We report the standard and cessation type flow reversals for the Jet-A fluid with Prandtl number of around 19. The power spectral density (PSD) of velocity follows the Bolgiano–Obukhov (BO) scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.