Abstract

This article studies effect of thermal radiation, chemical reaction and parabolic motion on the unsteady MHD Casson fluid flow past an infinite vertical plate embedded with ramped wall temperature. The fluid is electrically conducting and passing through a porous medium. This phenomenon is modeled in the form of partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced and corresponding dimensionless equations are solved using the Laplace transform technique. Analytical expressions for velocity, temperature and concentration profiles are obtained. The features of the velocity, temperature and concentration are analyzed by plotting graphs and the physical aspects are studied for different parameters like the magnetic field parameter M, thermal radiation parameter R, chemical reaction parameter〖 R〗^', thermal Grashof number Gr, mass Grashof number Gm, Schmidt number Sc, Prandtl number Pr and time variable t. It is seen that velocity profiles decrease with increase in thermal radiation R and chemical reaction parameter〖 R〗^'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call