Abstract

A moment technique is presented to improve the performance of the discrete ordinates method when solving the radiation problems in spherical media. In this approach the angular derivative term of the discretized 1-D radiative transfer equation is derived from an expansion of the radiative intensity on the basis of angular moments. The set of resulting differential equations, obtained by the application of the SN method associated to moment method, is numerically solved using the boundary value problem with the finite difference algorithm. Results are presented for the different independent parameters. Numerical results obtained using the moment approximation compare well with the benchmark approximate solutions. Moreover, the new technique can easily be applied to higher-order SN calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.