Abstract
Imaging experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 10(5) 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO(2) layer and of the Si-SiO(2) interface, using MOS (metal-oxide-semiconductor) capacitors manufactured on high-resistivity n-type silicon irradiated to X-ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance-voltage (C/G-V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose-dependent oxide charge density and three dominant radiation-induced interface states with Gaussian-like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G-V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.