Abstract
Abstract Sorption of Pu(IV) and Am(III) to natural clay from a mixture of synthetic rainwater — cement water was studied by batch and sequential extraction experiments as a function of pH and ionic strength These experiments were intended to simulate the effect of cement dissolution, causing the release of K+, Ca2+ and other cations from solidified radioactive waste into the aqueous phass. The results indicated a complex sorption behavior of the elements studied. It was found that iron oxides play an important role in the uptake of Pu(IV), whereas ion exchange and CaCO3 are mainly responsible for the binding of Am(III) on the clay. Simplified sorption experiments were conducted with clay minerals and iron oxides, using 0.01 and 0.1 mol/L NaNO3 as background electrolyte under an Ar atmosphere, for a better understanding of the sorption mechanisms. The experimental data were interpreted using the combination of surface complexation and ion-exchange models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.