Abstract

CeO2–ZrO2–MxOy (M=Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H2-temperature-programmed reduction (H2-TPR) and O2-temperature-programmed desorption (O2-TPD). The results showed that the prepared CeO2–ZrO2–MxOy oxides have a face-centered cubic fluorite structure and are nanosize. La3+ ions can significantly improve thermal stability and efficiently retard CeO2–ZrO2 crystal sintering and growth. Doped CeO2–ZrO2 with Y3+ and La3+ has 105 and 60m2/g surface area and 460 and 390μmol/g OSC before and after aging. The T50 of fresh Pt–Rh/CZYL/LA is 170°C for CO, 222°C for C3H8 and 189°C for NO, and shift to 205, 262 and 228°C after hydrothermal aging, which are better than those of Pt–Rh/CZY/LA or Pt–Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O2 on the surface of catalysts are closely related to the catalytic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.