Abstract

In the context of advancing automotive fleet electrification dynamics, the development of hybrid electric vehicles (HEV) and electric vehicles (EV) serves as a pivotal strategy to mitigate CO2 emissions and promote decarbonization in the transportation sector. While Battery Electric Vehicles (BEV) are prevalent, Fuel Cell Electric Vehicles (FCEV) are gaining traction as a compelling alternative for heavy mobility, particularly Light Commercial Vehicles (LCV) and trucks were relying solely on batteries may not be feasible. Ensuring the efficiency of FCEVs necessitates a profound understanding and control of fuel cell operational conditions. However, concerns persist regarding fuel cell durability due to specific aging phenomena leading to performance decay after operational cycles. The objective of this study is to build a model to accurately characterize and control the fuel cell within a FCEV, by simulating its behavior during cycling and by dealing with common ageing issues like flooding, cold start, and carbon monoxide poisoning. The model described in this study allows not only to simulate the cathode, the anode, and the fuel cell membrane, but it also proposes strategies to handle the wa-ter management at the membrane, deal with cold starts, counter poisoning and, in the end, en-hance the fuel cell performance and lifespan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call