Abstract

Numerical simulations for mold-flow analysis and experimental measurements of injection-molded plastic lenses have been conducted for investigation of optical qualities, residual birefringence, and form accuracy resulting from various pertinent process conditions. First, residual birefringence distributions on the lens have been predicted and verified experimentally. Furthermore, full-scale factorial design of experiments was conducted to comprehend the influences of qualities, such as shear stresses, form accuracy, and volumetric deviation, on the measured primary or Seidel aberrations. In conclusion, residual birefringence induced by stresses represented by photoelasticity measurements agrees well with the numerical predictions and the experimental results indicate that the residual birefringence is mainly generated during the mold-filling stage. In addition, spherical aberration of the injection-molded plastic lenses is more sensitive to the pertinent qualities as compared to coma and astigmatism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.