Abstract

AbstractThe origin and coupling of pressure fluctuations in an internal loop airlift bioreactor are investigated. The pressure fluctuations in the reactor are divided into two categories: global pressure fluctuations and local pressure fluctuations. It is found that the coupling between global pressure fluctuations and local pressure fluctuations mainly focuses in the frequency region between 10 and 30 Hz. Local pressure fluctuations in the reactor are strongly affected by pressure waves originating from the air‐supply system, while pressure fluctuations caused by the bubble eruption at the liquid surface have less influence on local pressure fluctuations. Based on the coherence analysis, the pressure signal at a certain position in the reactor is decomposed into three different parts: coherent part, joint incoherent part and exclusive incoherent part. The energy ratios of these different parts are helpful to study the interaction among pressure fluctuations from different sources. Three flow regimes were identified from the evolution of the energy ratio of the joint incoherent part. © 2011 Canadian Society for Chemical Engineering

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.