Abstract

Neuronal avalanches are cascades of bursts of activity observed primarily in the superficial cortical layers, the distribution of which fits a power law well. Motivated by the observation, we study how a power-law activity distribution emerges in a spiking neural network model. Specifically, we clarify the fundamentals of the phenomenon by applying a general theory of scale-free behavior, introduced to explain the power-law degree distribution in a brain network, and disclose that two kinds of fluctuations in spiking dynamics serve as the essential mechanism for the phenomenon. It is shown that the scale-free behavior arises from a Markov process or a Fokker-Planck diffusion in one dimension and how the power-law exponent of the activity distribution is determined depending on several factors, including the time bin. Finally, we also explain the scale-free behavior observed in the statistics of activity lifetimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.