Abstract

We present different aspects of dense granular flows in a Couette geometry using a variety of particulate materials with shape and size distributions. Tracer studies point to an apparent coupling of particle size with flow and stress field gradients. While there is a clear industrial motivation to use “real” materials as a means to expand basic physical and engineering research in granular dynamics, the current study suggests additional academic motivations. Indeed, particles with distributed characteristics uncover rich interactions between flow and stress fields that might otherwise go un-noticed with model materials such as spherical glass beads. Distribution of size and shape play a strong role in how stress is transmitted in granular media (Kheiripour Langroudi et al. in Powder Technol 203:23–32, 2010) and how particle pattern arrangements evolve. Direct solid fraction measurements, using a capacitance probe, show that dense particle flows exhibit significant variations in solid fraction in both sheared and stagnant layers. Furthermore, these measurements also show different dependence of the solid fraction on shearing rate: solid fraction decreases in sheared layers and increases in stagnant layers as the shear rate is increased. From these results the thickness of the shear band could be estimated and was found to vary as a function of particle shape and the roughness of the container walls. The main result is that shear stress (or torque) (see also Kheiripour Langroudi et al. in Powder Technol 197:91–101, 2010) and solid fraction profiles depend on particle shape and whether or not an extra degree of freedom in their movement is provided so that the system can dilate under various shear states in the Couette cell. This extra degree of freedom is assured in the present experimental work by allowing a slight axial outflow from the Couette device while the driven shear fields are in the radial and tangential directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call