Abstract

Problems can be handled properly in game theory as long as a countable number of players are considered, whereas, in real life, we have a large number of players. Hence, games at the thermodynamic limit are analyzed in general. There is a one-to-one correspondence between classical games and the modeled Hamiltonian at a particular equilibrium condition, usually the Nash equilibrium. Such a correspondence is arrived for symmetric games, namely the Prisoner’s Dilemma using the Ising Hamiltonian. In this work, we have shown that another class of games known as potential games can be analyzed with the Ising Hamiltonian. Analysis of this work brings out very close observation with real-world scenarios. In other words, the model of a potential game studied using Ising Hamiltonian predicts behavioral aspects of a large population precisely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.