Abstract

ABSTRACTTwo-photon polymerization (2PP) is a novel technology for the fabrication of complex three-dimensional (3D) microstructures. The number of applications employing this technology is rapidly increasing, and includes the fabrication of three-dimensional photonic crystals [1-4], medical devices, and scaffolds for tissue engineering [5, 6]. We have used 2PP to fabricate microneedle arrays with various geometries. These devices provide a unique approach for transdermal delivery of nucleic acid- and protein-based pharmacologic agents. Many of issues associated with conventional intravenous drug administration, including pain to the patient, trauma at the injection site, and difficulty in providing sustained release of a pharmacological agent, may be eliminated by applying the microneedles. The effect of microneedle geometry (e.g., tip sharpness and aspect ratio) on skin penetration was examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and integration with next generation MEMS- and NEMS-based drug delivery devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.