Abstract

Clove oil is an agricultural commodity with economic value. This essential oil can be obtained from flowers, stems, and leaves of clove plants. The quality of clove oil can be evaluated from eugenol levels in oil. An increase in eugenol levels from 70% to 98% can increase oil prices by up to 3 times. Oil obtained from clove leaves has a low eugenol content of 60-70%, therefore the purification is needed to improve the quality of oil. Membrane based separation for eugenol purification was suggested in this paper as new concept in essential oils purification processes. This study aimed to explore the suitable polymer as membrane material for eugenol purification. PES, PA, CA and PI were used in this study, where the membranes were prepared via NIPS technique using manual casting knife to form flat sheet membranes. The membranes were immersed in eugenol to evaluate the solubility. The insoluble membrane was used for purification performance test in membrane filtration cell. The results show that PES and PA membranes were completely dissolved in eugenol in less than 1 minute, while PI and CA membranes were insoluble in eugenol. However, the PI membrane has much lower solvent permeability than CA membrane. The thermal annealed PES membrane for 3 h at 180°C dissolved in eugenol in 30 minutes for complete dissolution. It is concluded that PI and CA membranes can be used as membrane material for eugenol purification but CA more favorable, while PES membrane has a potential for similar purposes after being thermal annealed. However, these findings can offer an important reference for the application of polymeric membranes for clove oil purification through an effective and efficient process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.