Abstract

Poly(ethylene terephthalate)/polypropylene (PET/PP) blends of different compositions were extruded through a 2-mm capillary die using a corotating twin-screw extruder. The extrudates were cryogenically fractured and examined using scanning electron microscopy. The viscosity ratio of the constituent polymers alone was found to be unsuitable for explaining the polymer blend morphology. At a PET concentration of 20%, the extrudate consists of three regions. The skin layer, which is about 10 μm thick, has a lower concentration of the dispersed PET phase than the overall concentration. The intermediate region, which is about 400 μm thick, has profuse PET fibers and some small PET particles. The central region, which is approximately 800 μm in diameter, mainly contains PET particles that are generally bigger. A low barrel temperature, low die temperature, and fast cooling rate helped to retain the fibers near the extrudate skin. Meanwhile, the variation of the barrel temperature, die temperature, and cooling media did not produce a significant affect on the PET particle size distribution in the central region of the extrudate. A high screw speed and a high postextrusion drawing speed were very effective in producing fibers in the extrudates through elongation of particles. At a PET concentration of 30%, coalescence of the PET phase was prevalent, leading to the formation of PET platelets near the extrudate skin and irregular PET networks in the central region of the extrudate. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1743–1752, 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.