Abstract

The Southern Ocean plays a vital role in the global climate system and the life cycle of high-latitude marine life. Phytoplankton is an important source of primary productivity in this ecosystem. Its future changes could affect Southern Ocean geochemistry, carbon export, and higher trophic organisms. To better protect Antarctica, three different marine protected areas (MPA) have been established in the Ross Sea region. Because time-continuous and regionally complete data are difficult to obtain in this region, we obtained data from ocean model outputs to understand the spatiotemporal variability of phytoplankton biomass in this region. This study explored the correlation between phytoplankton biomass and key environmental factors. Phytoplankton biomass peaks in February as temperatures rise and sea ice melts. Correlations also vary between different protected areas. The correlation between biomass, nitrate, and salinity in the Krill Research Zone (KRZ) area was significantly different from other protected areas. In addition, in the context of global warming, Antarctica lacks temperature perception. The model results show a downward trend in temperature and an increase in sea ice coverage in the western Ross Sea that other studies have also pointed to. How phytoplankton biomass will change in protected areas in the future is a question worth considering. Finally, the study simply simulates future regional trends by comparing the biomass distribution in hot years to average years. This will increase our knowledge of the polar system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call