Abstract

The presented paper describes the study of ligand-exchange dependent properties of mercury chalcogenides (HgS, HgTe) colloidal quantum-dot thin films. Thin films of colloidal quantum dots of mercury telluride and mercury sulfide were prepared using a layer-by-layer deposition technique applying dip-coating and spin-coating methods. The impact of the synthetic procedure of quantum dots, solvent and concentration of colloidal solution on the thin films’ properties was analyzed. By using concentrated colloidal solutions in tetrachloroethylene, we succeeded in the preparation of homogeneous thin films with minimal roughness. The surface morphology and thickness of the thin films were determined using AFM. The voltage–current characteristics of photosensitive devices applying various ligand exchanges were investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call