Abstract

Zinc oxide (ZnO) was synthesized and used to investigate the mechanism of phosphate removal from aqueous solution. ZnO particles were characterized by X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy before and after adsorption. Batch experiments were carried out to investigate the kinetics, isotherms, effects of initial pH and co-existing anions. The adsorption process was rapid and equilibrium was almost reached within 150 min. The adsorption kinetics were described well by a pseudo-second-order equation, and the maximum phosphate adsorption capacity was 163.4 mg/g at 298 K and pH ∼6.2±0.1. Thermodynamic analysis indicated the phosphate adsorption onto ZnO was endothermic and spontaneous. The point of zero charge of ZnO was around 8.4 according to the pH-drift method. Phosphate adsorption capacity reduced with the increasing initial solution pH values. The ligand exchange and Lewis acid-base interaction dominated the adsorption process in the lower and the higher pH range, respectively. Nitrate, sulfate and chloride ions had a negligible effect on phosphate removal, while carbonate displayed significant inhibition behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call