Abstract

Using the stopped-flow circular dichroism (SFCD) technique, we investigate the kinetics of the pH-induced folding and unfolding process of the DNA i-motif. The results show that the molecule can fold or unfold on a time scale of 100 ms when the solution pH is changed. It is also found that the folding and unfolding rates strongly depend on the solution pH. On the basis of quantitative data, we propose theoretical models to decipher the folding and unfolding kinetics. Our models suggest that the cooperativity of protons is crucial for both the folding and unfolding process. In the unfolding process, the cooperative neutralization of two protons (out of the total six protons in the i-motif molecule) is the only rate-limiting step. In the folding process, there exists a critical step in which three protons bind cooperatively to the DNA strand. These results offer an in-depth understanding of the folding and unfolding kinetics of the DNA i-motif and may give precise guidance for constructing novel nanodevices based on the DNA i-motif.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.