Abstract
Due to its wide use in anticonvulsant pharmacotherapy, phenobarbital (PHEN) is an aquatic contaminant with a high prevalence in the environment. In this adsorption study, chitosan and chitosan-based magnetic adsorbents containing different amounts of incorporated magnetite (CS, CS·Fe3O4 1:1, CS·Fe3O4 1:5, and CS·Fe3O4 1:10) were used for phenobarbital removal. The magnetic adsorbents were synthesized by co-precipitation method and characterized through FTIR, XRD, MEV, and VSM analysis. In PHEN adsorption, the equilibrium and adsorption kinetic were better adjusted by the Sips and pseudo-second-order model, respectively. Among the four nanoadsorbents used, the maximum phenobarbital adsorption capacity was 94.60mgg-1 using 25mg of CS·Fe3O4 1:5, with a concentration of PHEN (50mg L-1), pH 7.0 at room temperature. The parameters of pH, adsorbent dosage, ionic strength, and thermodynamic study were tested for the adsorbent with the highest performance (CS·Fe3O4 1:5). The nanoadsorbent demonstrates efficiency in the removal of the contaminant for diverse adsorption cycles. Finally, the protocol employing magnetic adsorbents dispenses the subsequent steps of filtration and centrifugation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.