Abstract

Abstract Gas-atomized Mn 54 Al 46 particles constituted nominally of only e- and γ 2 -phases, i.e. no content of the ferromagnetic L1 0 -type τ-phase, have been used to study the evolution of phases during short time of high-energy milling and subsequent annealing. Milling for 3 min is sufficient to begin formation of the τ-MnAl phase. A large coercivity of 4.9 kOe has been obtained in milled powder after annealing at 355 °C for 10 min. The large increase in coercivity, by comparison with the lower value of 1.8 kOe obtained for the starting material after the same annealing conditions, is attributed to the combined formation of the τ-MnAl and β-Mn phases and the creation of a very fine microstructure with grain sizes on the order of 20 nm. Correlation between morphology, microstructure and magnetic properties of the rapidly milled MnAl powders constitutes a technological advance to prepare highly coercive MnAl powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.