Abstract

A two-dimensional mesoscale model based on the concept of hybrid cellular automata is developed to study phase transformations in a complex phase steel during continuous cooling. The model is capable of simulating microstructure evolution with carbon diffusion in the volume and along grain boundaries, γ/α interfaces migration into austenite, as well as formation of bainite and martensite islands during intensive cooling in lower temperatures. In contrast to the classic statistical approaches which are based on the assumption of modeling one point in the material with homogeneous microstructure, the proposed phase transformations’ model in the mesoscale accounts for material heterogeneity. The simulation results in the form of a digital material representation with microstructures and maps showing the carbon concentration field as well as microhardness distribution are presented. One of the main advantages of the model is that has only seven adjustment coefficients that are used in the fitting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.