Abstract

Green River shale (Type I kerogen), Yaamba shale (Type II kerogen) and Sarufutsu coal (Type III kerogen) were heated to various temperatures using Rock-Eval. The amount of hydrocarbons generated and weight loss by pyrolysis were measured to obtain a better understanding of petroleum generation. After the pyrolysis experiments, elemental analysis (C, H), vitrinite reflectance (% R o) measurement, maceral observation, infrared spectroscopy (IR) and 13C-NMR spectroscopy were carried out on the coal samples. Changes in H/C atomic ratio, IR and NMR spectra indicate that experiments by Rock-Eval resemble those of the natural evolution of kerogen. However, the petrographic changes of the coal show more similarity to coal liquefaction and coking than to natural coalification. Changes in the amount of generated hydrocarbons with increasing maturation show that Type II kerogen produces more hydrocarbons than does Type I when R o does not exceed 1.1%. Petroleum generation curves for the three samples were concordant with trends in natural systems, and a conceptual model of petroleum generation curve classified into three types is proposed, namely (1) curve of total amount enerated, (2) curve of generation rate, and (3) curve of fluid composition. Changes of IR and NMR spectra after pyrolysis imply that generated hydrocarbons are derived from aliphatic C structures of kerogen macromolecules. Moreover, the difference in genetic potential between Type I and Type III reflects different amounts of aliphatic structures. Type I is assumed to have a simple assemblage (mainly polymethylene carbons), and Type III is assumed to have a more complex variety of structures that are responsible for the difference in generation rates between the two kerogen Types. A quantitative analysis of C species of various bond structure by 13C-NMR confirms that petroleum generation is the process of bond cleavage of kerogen macromolecules; lower-energy bonds decrease at an earlier stage of reaction, while aromatic carbons with higher bond energies survive to form graphitic structure at postmature stages. Emphasis is placed on the idea that the most important and direct factor in petroleum generation is a change in the molecular structure of kerogen with increasing maturation. NMR and other methods providing information about molecular structures of kerogen will become strong tools for evaluating source rocks and sedimentary basins in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.