Abstract

Selected electrochemical methods for the determination of possible membrane permeabilization in two Escherichia coli bacterial strains were examined. Escherichia coli, a gram-negative rod-shaped bacterium, is an important component of the mammalian intestinal microbiota. However, some strains of this bacterium are pathogenic and can cause a variety of diseases. Partial aim of this work was to identify β-galactosidase enzyme as one of the possible factors characterizing disintegration of bacterial membrane. To permeabilize the bacterial membrane, cathelicidin LL-37, the body's own antimicrobial peptide, and membrane degradation by microwave radiation were used. In the investigation of structural changes in the bacterial membrane, square-wave voltammetry and chronopotentiometric dissolution analysis in combination with the mercury drop electrode and the glassy carbon electrode were used. UV/VIS spectrophotometry was used to indirectly track changes in bacterial cell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.