Abstract

The matched expansion method, introduced by the authors in two earlier papers (1976) devoted to mode III loading, is applied to the practically important case of mode I loading of a symmetric specimen. The method allows the linear elastic far-field to be considered separately from the elasto-plastic near-tip field, except for coupling through a set of parameters that are determined explicitly in the matching. The effects of the plasticity are thus found, once and for all, from the solution of a set of standard elasto-plastic problems for a semi-infinite crack in an infinite body, whose properties may be tabulated. The solution for any particular specimen geometry and loading then follows from a small set of linear elastic solutions for the specimen, which define, through coefficients γij appearing in their near-tip expansions, all the parameters in the “inner” and “outer” solutions. The effects of plasticity appear in these parameters only through a set of constants Cti that define the far-field expansions of the “inner” (near-tip) solutions: they are material constants, depending upon the constitutive relation for the material, but not upon specimen geometry and loading. The J-integral, being obtainable from the far-field, is expressed as an explicit asymptotic series in the loading parameter ε, whose coefficients are given as functions of the “elastic” parameters γij and the material constants Ci. It is demonstrated that a plastic-zone correction term, ry, can be chosen to yield a two-term asymptotic expansion for J; the value of ry depends upon the yielding model only through the constant C1.The Dugdale (1960) model of yielding is treated, as a simple example for which all calculations can be performed analytically, and for which exact solutions are available for comparison.Finally, the near-tip solutions are constructed for a material obeying the Mises yield criterion and associated flow-rule, using a specially developed finite element program. The first eight of the constants Ci are tabulated, which suffice to define the J-integral up to terms of order ε6 (where ε is a loading parameter) and some representative near-tip features are displayed graphically. The computed value of C1 shows that the conventionally adopted value for the plastic-zone correction ry is too large by a factor of roughly 2.8, if it is to yield a genuine asymptotic estimate for J. As an example, the “elastic” parameters γij are found, from a boundary collocation program, for a centre-cracked square plate subjected to tensile loading; and a plot of J versus load, and the plastic-zone shape at a particular load level, are displayed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call