Abstract

Poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate)(PEDOT:PSS) is a candidate material for applications in molecular electronics, such as organic field effect devices, organic photovoltaics, and organic light emitting devices. The properties of 3.5–4.0 nm sized SnO2 nanoparticles doped PEDOT:PSS films were investigated for anode application. Sheet resistance was decreased and rms roughness was slightly increased with the incorporation of SnO2 nanoparticles. However, the connectivity of conducting grains was improved by the plasticizing effect of surface –OH groups of SnO2 nanoparticle. Using photoemission spectroscopy and near edge X-ray absorption fine structure (NEXAFS), the electronic structure of the films is studied comparatively on the C 1s NEXAFS, secondary electron emission cut off, and valence band spectra. The start of electron emission retarded and valence band maximum was increased in the PEDOT:PSS-SnO2 nanocomposite films. These changes in the electronic structure resulted from emitted electron screening of core-hole in the PEDOT:PSS energy band and electron donation of SnO2 nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.