Abstract

The pyrolysis of passenger-car-waste-tires (PCWT) has recently attracted widespread attention because it is a highly effective disposal method. However, a comprehensive understanding of real tire pyrolytic processes is limited owing to the complicated PCWT pyrolysis reaction system, particularly regarding the reaction mechanism. This study investigated the PCWT pyrolytic processes using a thermogravimetric analyzer coupled with mass spectrometry and analyzed all the pyrolytic products using pyrolysis–gas chromatography coupled with mass spectrometry. The composition and distribution of the PCWT pyrolytic products were investigated under a kinetic regime to eliminate other influences on the intrinsic reaction. The pyrolytic products mainly consisted of chain and cyclic alkenes, and monocylic aromatics. Importantly, an integral pyrolytic mechanism network for the PCWT was established based on the pyrolysis of single rubbers (natural, styrene butadiene, and butadiene rubbers). The reaction routes for the main products were determined according to the mechanism. Moreover, a kinetic study of the PCWT pyrolysis revealed the activation energy for this complicated reaction system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.