Abstract

Energy storage systems based on phase change materials are very innovative and useful in different engineering applications. The present study deals with numerical simulation of energy transport performance in a shell and tube energy storage system, including the paraffin wax or copper foam insertion with paraffin wax. The mathematical description of the considered problem consists of the basic equations grounded on the conservation laws with appropriate initial and boundary conditions. These equations were solved by the finite element method. The developed code was verified using the mesh sensitivity analysis and numerical data of other authors. Effects of the porosity, Rayleigh number, melting temperature, heat pipes location on melting flow structures and energy transport, and Nusselt number and melting volume fraction were scrutinized for charging and discharging modes. It was found that in the case of porous metal foam, the phase change intensity increases for the mentioned two regimes in comparison with pure paraffin wax. The vertical placement of the heating tubes results in the best charging time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.