Abstract

ObjectivesThe aims of the present study were to determine oxidative stress and to explore possible reasons of reactive oxygen species (ROS) increase in human lens epithelial (HLE) B3 cells exposed to low intensity 1.8 GHz radiofrequency fields (RF).MethodsThe HLE B3 cells were divided into RF exposure and RF sham-exposure groups. The RF exposure intensity was at specific absorption rate (SAR) of 2, 3, or 4 W/kg. The ROS levels were measured by a fluorescent probe 2′7′-dichlorofluorescin diacetate (DCFH-DA) assay in the HLE B3 cells exposed to 1.8 GHz RF for 0.5, 1, and 1.5 h. Lipid peroxidation and cellular viability were detected by an MDA test and Cell Counting Kit-8 (CCK-8) assays, respectively, in the HLE B3 cells exposed to 1.8 GHz RF for 6, 12, and 24 h, respectively. The mRNA expression of SOD1, SOD2, CAT, and GPx1 genes and the expression of SOD1, SOD2, CAT, and GPx1 proteins was measured by qRT-PCR and Western blot assays in the HLE B3 cells exposed to 1.8 GHz RF for 1 h.ResultsThe ROS and MDA levels significantly increased (P<0.05) in the RF exposure group and that the cellular viability, mRNA expression of four genes, and expression of four proteins significantly decreased (P<0.05) compared with the RF sham-exposure group.ConclusionsOxidative stress is present in HLE B3 cells exposed to 1.8 GHz low-intensity RF and that the increased production of ROS may be related to down-regulation of four antioxidant enzyme genes induced by RF exposure.

Highlights

  • According to statistics released by the International Telecommunication Union in June 2012, total cellular phone subscriptions have reached almost 6 billion by end 2011, corresponding to global penetration of 86%

  • Their frequencies vary according to the specific system but are nowadays usually around 900 or 1 800 MHz (GSM) and 2 200 MHz (UMTS), which are in the microwave range

  • Concern about possible adverse health effects induced by radiofrequency fields (RF) is fast growing owing to increasing exposure to radiation from cellular phones and base stations, together with exposure to other sources of nonionizing radiation such as power lines and radar

Read more

Summary

Introduction

According to statistics released by the International Telecommunication Union in June 2012, total cellular phone subscriptions have reached almost 6 billion by end 2011, corresponding to global penetration of 86%. A cellular phone network consists of two communicating elements: cellular phones and base stations. Their frequencies vary according to the specific system but are nowadays usually around 900 or 1 800 MHz (GSM) and 2 200 MHz (UMTS), which are in the microwave range. Concern about possible adverse health effects induced by radiofrequency fields (RF) is fast growing owing to increasing exposure to radiation from cellular phones and base stations, together with exposure to other sources of nonionizing radiation such as power lines and radar. Some studies detected an association between human health and exposure to RF, with clinical conditions including childhood leukaemia, brain tumors, genotoxicity, and neurodegenerative disease reported [1,2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call