Abstract
The oscillating flow of the viscoelastic fluid in cylindrical pipes has been applied in many fields, such as industries of petroleum, chemistry, and bioengineering. It is studied using the fractional derivative Maxwell model in this paper. The exact solution is obtained utilizing a simpler and more reasonable technique. According to this velocity solution, the time-velocity profile of one kind of viscoelastic fluid is analyzed. From analysis, it is found that the flow behaves like the Newton fluid when the oscillating frequency is low, and the flow reversal occurs when the oscillating frequency is high. Moreover, two series approximations for the velocity are obtained and analyzed for different model parameters. In one series approximation, the velocity is parabolic in profile, while in the other series approximation, the velocity presents three characteristics: (1) it is independent of radius and at the centerline is smaller than that of steady Poiseuille flow, (2) the phase lags about 90deg with respect to the imposed pressure gradient, and (3) the Richardson annular effect is found near the wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.