Abstract

A shift in the fluorescence emission maxima with gradual increase in excitation wavelength is termed as red edge excitation shift (REES). Tryptophan residues are widely utilized as intrinsic fluorescence probe to investigate the protein structures. Wavelength selective tryptophan fluorescence can explore the dynamics of surrounded water molecules, the ubiquitous biological solvent. Thus REES experiment of various protein conformational states can provide significant input to the study of protein folding pathway and it can also be useful to study interaction of proteins with others. In this review article, we shall focus on red edge effect of various multi-tryptophan proteins in their respective native, intermediate and denatured state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call