Abstract

This paper is mainly concerned with obtaining the pure optical cubic of solitons in nonlinear optical fibers and formulating them by relying on the nonlinear Schrodinger equation (NLSE). This method is effective for extracting optical solitons. We discuss the model responsible for controlling the motion of the soliton with a third-order dispersion effect. This is done without the need for external capabilities to support the visual movement of the soliton. The cubic optical soliton of this model is obtained by relying on the nonlinearity of Kerr law of and without chromatic dispersion. Soliton wave solutions are precisely extracted and constructed using different Csch, Tanh-Coth and exponential functions as well as fiber-optic solitary wave solutions which include complex soliton mixed solutions, singular, multiple, dark and bright solutions. The terms of integration and constraints for the resulting solutions are presented and discussed and we find the solitary and periodic waves solutions of the nonlinear Schrödinger equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call