Abstract

The reduction in the grain size to nanometer range can bring about radical changes in almost all of the properties of semiconductors. CdS nanoparticles have attracted considerable scientific interest because they exhibit strongly size-dependent optical and electrical properties. In the case of nanostructured materials, confinement of optical phonons can produce noticeable changes in their vibrational spectra compared to those of bulk crystals. In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time intervals. The crystal structure and grain size of the samples were determined using X-ray diffraction and HRTEM. The Raman spectra of the as-prepared and heat treated samples were recorded using conventional Raman and micro-Raman techniques. The spectrum of as prepared sample exhibited an intense, broad peak at 301 cm−1 corresponding to the LO phonon mode. Higher order phonon modes were also observed in the spectra. A noticeable asymmetry in the Raman line shape indicated the effect of phonon confinement. Other features in the spectra are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call