Abstract

Blazars, a subset of powerful active galactic nuclei, feature relativistic jets that shine in a broadband electromagnetic radiation, e. g. from radio to TeV emission. Here I present the results of the studies that explore gamma-ray and optical variability properties of a sample of gamma-ray bright sources Several methods of time-series analyses are performed on the decade-long optical and Fermi/LAT observations. The main results are as follows: The sources are found highly variable in both the bands, and the gamma-ray power spectral density is found to be consistent with flicker noise suggesting long-memory processes at work. While comparing two emission, not only the overall optical and the $\gamma$-ray emission are highly correlated but also both the observation distributions exhibit heavy tailed log-normal distribution and linear RMS-flux relation. In addition, in some of the sources indications of quasi-periodic oscillation were revealed with similar characteristic timescales in both the bands. We discuss the results in light of current blazar models with relativistic shocks propagating down the jet viewed close to the line of sight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.