Abstract
Personalised recommendation has gradually become an effective way to solve the problem of information overload in the era of big data. Therefore, in order to improve the efficiency of online learning, this paper discusses the design of online learning resource recommendation algorithm based on improved BP neural network, and the results show that it has high value for popularisation and application. Based on the transmission network, the improved BP neural network of momentum factor can achieve more efficient data mining. After training learning resources and user data, it can match the real score and the predicted score, so as to ensure the accuracy of personalised recommendation. The main contribution of this paper is to propose a recommendation algorithm to online learning resources through improved BP neural network algorithm, and the feasibility of the algorithm is verified. The research method of this paper provides a reference for the research of personalised recommendation algorithm of online resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.