Abstract

A study of different on-line adaptive classifiers, using various feature types is presented. Motor imagery brain computer interface (BCI) experiments were carried out with 18 naive able-bodied subjects. Experiments were done with three two-class, cue-based, electroencephalogram (EEG)-based systems. Two continuously adaptive classifiers were tested: adaptive quadratic and linear discriminant analysis. Three feature types were analyzed, adaptive autoregressive parameters, logarithmic band power estimates and the concatenation of both. Results show that all systems are stable and that the concatenation of features with continuously adaptive linear discriminant analysis classifier is the best choice of all. Also, a comparison of the latter with a discontinuously updated linear discriminant analysis, carried out in on-line experiments with six subjects, showed that on-line adaptation performed significantly better than a discontinuous update. Finally a static subject-specific baseline was also provided and used to compare performance measurements of both types of adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.