Abstract
Ocean primary production is an important factor for determining the ocean's role in global carbon cycle. In recent years, much more chlorophyll-a concentration data in the euphotic layer were derived from the satellite ocean color sensors. The primary productivity algorithms have been proposed based on satellite chlorophyll measurements (Piatt, 1988; Morel, 1991) and other environmental parameters such as sea surface temperature or mixed layer depth (Behrenfeld and Falkowski, 1997; Esaias, 1996; Asanuma, 2002). In order to estimate integrated primary productivity in the whole water column, the vertical distribution of chlorophyll concentration below the sea surface should be reconstructed based on satellite data. In this paper, the vertical profile data of chlorophyll-a (Chl-a) measured around Japan Islands from 1974 to 1994 were reanalyzed based on the shifted-Gaussian shape proposed by Piatt et al (1988). Using this statistical model (neural network) and the photosynthesis irradiance parameters from Asanuma (2002), the distribution of primary productivity and its seasonal variation around Japan islands were estimated from SeaWiFS data, and the results were compared with in situ data and the other two models estimated from VGPM and mixed layer depth model. Keywords: ocean color, primary productivity, chlorophyll profile, artificial neural network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Remote Sensing and Earth Sciences (IJReSES)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.