Abstract
AbstractThe present study applies a hybrid numerical scheme of the Laplace transform technique and the control volume method in conjunction with the hyperbolic shape functions to investigate the effect of a potential field on the one‐dimensional non‐Fickian diffusion problems in the cylindrical co‐ordinate system. The Laplace transform method is used to remove the time‐dependent terms in the governing differential equation and the boundary conditions, and then the resulting equations are discretized by the control volume scheme. The primary difficulty in dealing with the present problem is the suppression of numerical oscillations in the vicinity of sharp discontinuities. Results show that the present numerical results do not exhibit numerical oscillations and the potential field plays an important role in the present problem. The strength of the jump discontinuity can be reduced by increasing the value of the potential gradient. The propagation speed of mass wave is independent of the potential gradient and the boundary condition. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.