Abstract

In this paper, vibration features of variable thickness rectangular viscoelastic nanoplates are studied. In order to consider the small-scale and the transverse shear deformation effects, governing differential equations and relevant boundary conditions are adopted based on the nonlocal elasticity theory in relation to first-order shear deformation theory of plates. The numerical solution for the nanoplate vibration frequencies is proposed applying the differential quadrature method, as a simple, effective and precise numerical tool. The present formulation and solution method are validated showing their fast convergence rate and comparison of results, in limited cases, using the available literature. Excellent agreement between the obtained and available results is observed. The effects of structural damping coefficient, boundary conditions, aspect ratio, nonlocal and variable thickness parameters on viscoelastic nanoplates vibration behaviour are studied in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call