Abstract

The effects of thermal annealing conditions, and nitrogen tenor on the properties of nitrogen doped silicon films (NIDOS) deposited by low-pressure chemical vapor deposition (LPCVD) at low temperature (480/spl deg/C) from a mixture of disilane and ammonia are investigated. Two series of samples have been studied: boron doped NIDOS films and NIDOS films. The resistivity measurements and the scanning electron microscopy observations showed respectively, a conducting behavior and a polycrystalline structure of films at high temperature. The electrical characterization highlighted the improvement of NIDOS conductivity when the nitrogen content increases. Fourier transform spectrometry measurements revealed that nitrogen combines with the boron to form a B-N complex for boron doped NIDOS films. This complex is responsible of the increase of the resistivity values of boron doped NIDOS films when the nitrogen tenor increases. Results showed a good correlation between the electrical and the structural properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.