Abstract

Ni/AlN/Ni waveguide system provides intensity enhancement by a factor of ~30 at 8.05 keV photon energy. In the present study, the effect of deviation of structural parameters (thickness of each layer) along with the surface-interface properties on electric field intensity (EFI) inside an ion beam sputter deposited Ni/AlN/Ni waveguide is investigated. EFI calculations are performed using structural parameters obtained from X-ray reflectivity (XRR) measurements performed using Cu-Kα source. Deposited waveguide structure provides intensity enhancement (~26) slightly lower than optimized value (~30). Furthermore, temporal stability of the structure is investigated using combined XRR and grazing incidence X-ray fluorescence (GIXRF) techniques (at 15 keV photon energy) after about 15 months. Some structural changes are observed which, however, do not lead to further decrease in intensity enhancement inside the waveguide, making it suitable for applications at 8.05 keV photon energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.