Abstract

In a designed and developed ultrasonic nebulizer system for obtaining macroscopic-quantity photopolymerized fullerene (C60) clusters, a C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating the solvent (toluene). The system was invented to produce nanoscale photopolymerized carbon clusters through the irradiation of ultraviolet (UV) light on the C60 aggregates in vacuum. The products, photopolymerized C60 clusters obtained from the system using UV-visible (UV-Vis) absorption and high-performance (or high-pressure) liquid chromatography (HPLC) spectra, were characterized. Compared with the non-irradiating C60 solution, the UV-Vis absorption spectrum of the irradiated C60 solution was drastically decreased, especially at lambda = 335 nm and in the visible region from lambda = 450-650 nm. As such, the UV-Vis absorption spectra provide information about the polymerization of C60 molecules. These photopolymerized C60 clusters can be detected as having a heavy molecular mass order through the HPLC system, and the C60 and photopolymerized C60 cluster can be extracted from the trapped solution on the molecular mass. Although there is a possibility that the products include various forms of C60 clusters, the results suggest that the products obtained from the system using a vaporizer establish a new method of obtaining macroscopic-quantity C60 clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.