Abstract
The development of hydraulic fracturing has created a huge demand for fracturing fluids with high performance and low formation damage in recent years. In this paper, a foam stabilized by partially hydrophobic modified SiO2 nanoparticles and sodium dodecyl benzenesulfonate (SDBS) was studied as a fracturing fluid. The properties of SiO2/SDBS foam such as rheology, proppant suspension, filtration, and core damage were investigated. The experimental data showed that the stability and thermal adaptability of sodium dodecyl benzenesulfonate (SDBS) foam increased when silica (SiO2) nanoparticles were added. The surface tension of SDBS dispersion almost did not change after SiO2 nanoparticles were added; however, the dilational viscoelasticity of the interface increased, indicating that the SiO2 nanoparticles attached to the interface and formed a stronger viscoelasticity layer to resist the external disturbance. The proppant settling velocity in the SiO2/SDBS foam was found to be 2 orders of magnitude lower th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.